

Physiologically-based Pharmacokinetic Modeling for the Development of Dermatological Drug Products and its Regulatory Impact

ASCPT 2019 Pre-Conference:

PBPK Modeling for the Development and Approval of Locally Acting Drug Products

March 13th, 2019

Session 4: Dermal Drug Delivery

Eleftheria Tsakalozou, PhD

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs CDER | US FDA

www.fda.gov

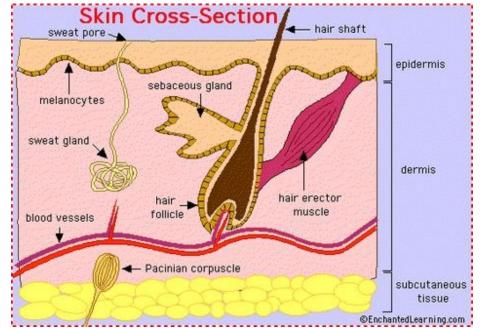
Disclaimer: My remarks today do not necessarily reflect the official views of the FDA

Overview



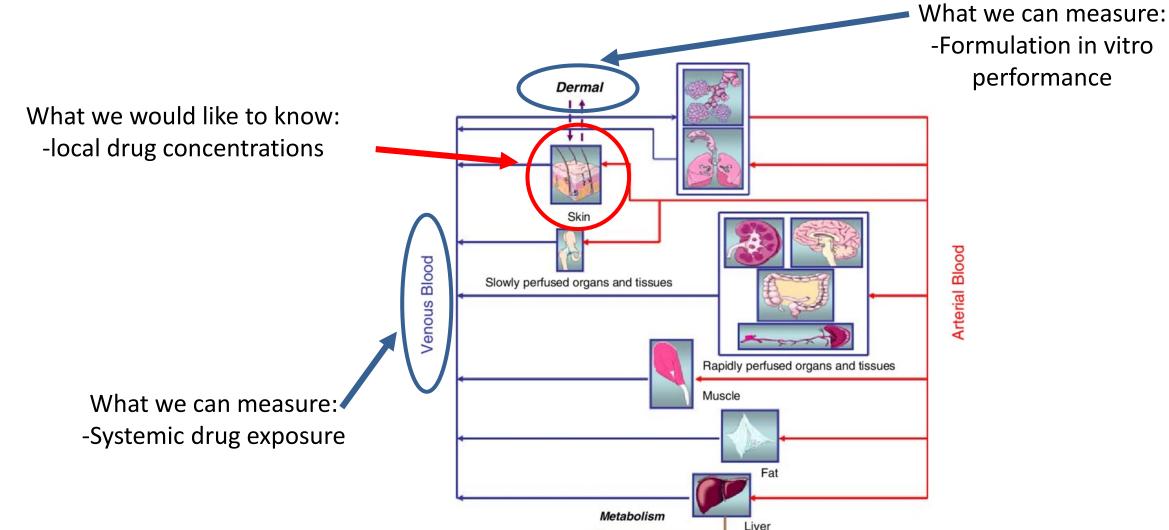
- Drug development of locally-acting drug products
 - Dermal physiologically-based pharmacokinetic (PBPK) modeling
- Regulatory utility of dermal PBPK modeling
 - Case studies
 - Challenges
- GDUFA-funded research
- Future directions

Dermatological Drug products



- Transdermal delivery systems (TDS)
- Semisolid Topicals
 - Creams
 - Ointments
 - Lotions
 - Gels
- Solution-based Topicals
 - Solutions
 - Swab
 - Foam aerosols

Modeling Skin Bioavailability ...



- QSAR models: hydrophobicity, MW, hydrogen bonding
- Mathematical models: diffusion-based or compartmental models
- Computational Fluid Dynamics models: fluid and particle transport based on realistic geometries
- Mechanistic PBPK models: API, formulation and human/animal physiology (variability and population)

Dermal PBPK Modeling Relates What we Want to Know to What we can Measure

Dermal PBPK Model Development Process

www.fda.gov

IVPT: In Vitro Permeation Testing, dOFM: dermal open-flow microperfusion, PK: Pharmacokinetic

Regulatory Utility of Dermal PBPK Models

Model-integrated evidence for generic drug development and approval

- Support alternative bioequivalence (BE) approaches
 - Comparative clinical endpoint BE studies not sensitive to formulation differences
 - In vitro testing for Q1/Q2 same formulations
- Define a safe space for critical attributes
- Extrapolate BA predictions and BE assessments from healthy to diseased populations

Conduct virtual BE studies

Product-specific guidance (PSG) development

Regulatory Utility of Dermal PBPK Models today's discussion

- Office of Generic Drugs Alternative BE approaches proposed by applicants
- - Case Study 1: Nicotine, TDS
 - Case Study 2: Lidocaine, topical cream

Regulatory Utility of Dermal PBPK Models today's discussion

- - Case Study 1: Nicotine, TDS
 - Case Study 2: Lidocaine, topical cream
- GDUFA-funded Research Predict BA and perform BE assessments in diseased populations

Dermal PBPK Modeling to Support Alternative BE Approaches

- Pre-ANDA meeting requests/ANDAs on dermatological drug products (yrs 2017-2018)
- PSG recommendations include in vivo BE studies Applicants' proposals:

Dermal PBPK modeling in support of not conducting in vivo BE studies (comparative clinical endpoint or pharmacokinetic endpoint studies)

- Q1/Q2 same and Q3 similar drug products, IVRT and/or IVPT
- Suitably verified dermal PBPK model to predict local and systemic drug amounts
- Virtual bioequivalence study and bioequivalence assessment

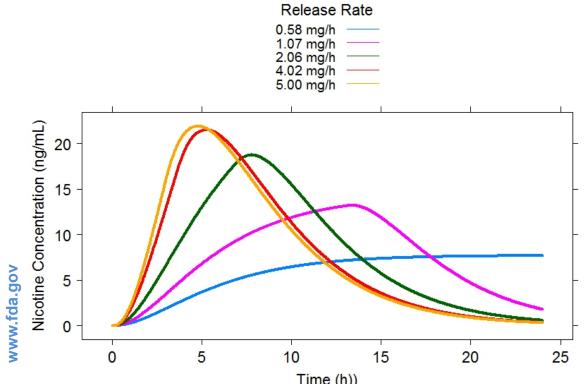
Ē

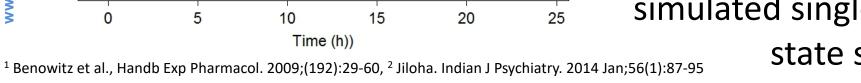
Regulatory Utility of Dermal PBPK Models today's discussion

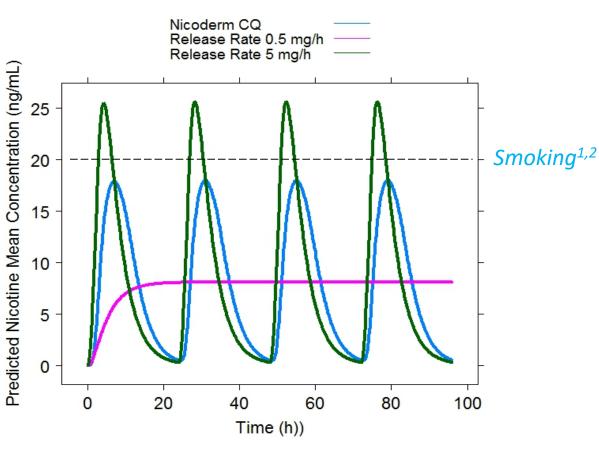
- Office of Generic Drugs Alternative BE approaches proposed by applicants
- - Case Study 1: Nicotine, TDS
 - Case Study 2: Lidocaine, topical cream
- GDUFA-funded Research Predict BA and perform BE assessments in diseased populations

Predict Systemic Bioavailability Based on the Release Rate for a Nicotine TDS

- Nicoderm CQ[®], Nicotine TDS, 21 mg/24 hours, extended release patch
- Simcyp Simulator (v17), MPML MechDermA Model
- Nicotine: monoprotic base, minimal PBPK model¹
- Default skin absorption parameters
- Formulation attributes
 - Dermal patch, controlled release profile from IVPT data² or zero order release rate³
- Model verification
 - Systemic exposure^{2,3}


¹Svensson. Clin Pharmacokinetics. 1987, 12: 30-40
²Shin et al., 2015 AAPS Annual Meeting and Exposition, Orlando, FL. 13
³Benowitz et al., Clin Pharmacol Ther. 1991 Sep;50(3):286-93


Ē


Transdermal Patch Development Leveraging the Nicotine Dermal PBPK Model

Patch release rate impacts systemic exposure

Ē

Formulation selection based on simulated single dose and steady state scenarios

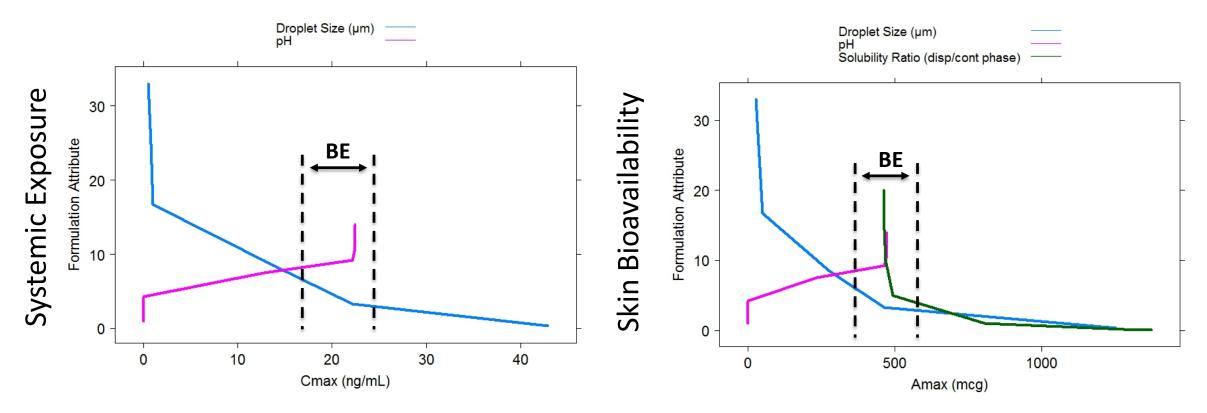
FDA

Predict Systemic and Skin Bioavailability Based on Formulation Attributes for a Lidocaine Cream

- EMLA[®] Cream (lidocaine 2.5 %/prilocaine 2.5 %)
- Simcyp v17 Simulator, MPML MechDermA Model
- Lidocaine: monoprotic base, minimal PBPK model¹
- Skin absorption parameters modified based on systemic exposure data²
- Formulation attributes³
 - Emulsion
 - Vehicle evaporation
- Model verification
 - Systemic exposure data²
 - Dermal open-flow microperfusion (dOFM) data⁴

www.fda.gov

¹Benowitz et al.. Clin Pharmacokinetics. 1978, May-Jun;3(3):177-201 ² EMLA[®] CREAM, label, https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/019941s021lbl.pdf


³ Rangappa et al., 2018 AAPS Annual Meeting and Exposition, Washington, D.C. ¹⁵ ⁴ Tiffner et al., 2018 AAPS Annual Meeting and Exposition, Washington, D.C.

Identify Formulation Attributes Impacting Systemic and FDA Local Lidocaine Exposure

Parameter sensitivity analysis using the lidocaine dermal PBPK model

- Evaporation rate
- Droplet size systemic + dermis exposure
- Droplet number
- Viscosity 🔀
- Solubility ratio (dispersed/continuous phase) dermis exposure

Define Safe Space Criteria for Formulation Attributes Leveraging the Lidocaine Dermal PBPK Model

Dermatological Products with: Therapeutic effect involves partitioning into the blood www.fda.gov Safety concerns

Ļ

Dermatological Products with: Therapeutic effect related to local exposure

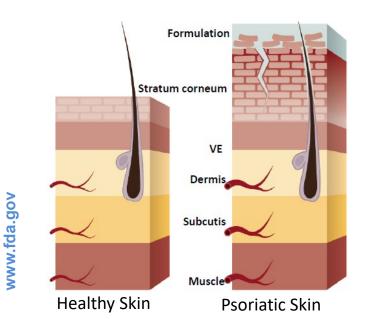
FDA

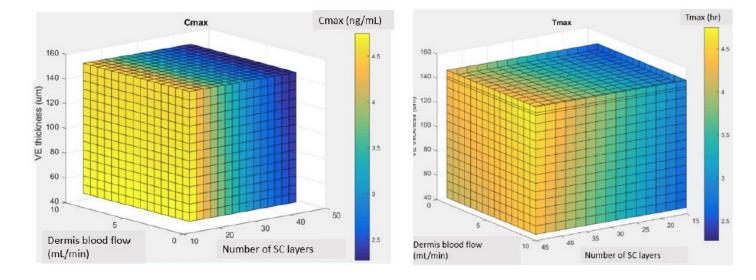
Regulatory Utility of Dermal PBPK Models today's discussion

- Office of Generic Drugs Alternative BE approaches proposed by applicants
- - Case Study 1: Nicotine, TDS
 - Case Study 2: Lidocaine, topical cream

Predict Caffeine Skin Bioavailability in Psoriatic Patients

Perspectives in Percutaneous Penetration 2018, 12th International Conference, La Grande Motte, France


Mechanistic Physiologically-Based Pharmacokinetic Modelling for Prediction of Dermal Absorption in Psoriatic Patients



F MARTINS¹, N PATEL¹, M. JAMEl¹ and S POLAK^{1,2}

¹Simcyp Limited, UK; ²Faculty of Pharmacy, Jagiellonian University Medical College, Poland

- Simcyp v17 Simulator, Psoriasis Dermal population
- Caffeine, solution gel

- Number of cracks, skin pH and SC hydration affect percutaneous absorption
 - Performance verification

Dermal PBPK modeling: Challenges

- Assessing model performance
 - Data availability: preclinical species, verification/qualification
 - Verification standards
- Proper documentation for model building and model performance
 - Model assumptions and limitations
 - Parameter optimization/sensitivity analyses
 - Verification and qualification outcomes
- Virtual bioequivalence studies
 - Drug product attributes, API characteristics and species physiology, intra- and inter-subject variability

Generic Drug User Fee Amendments: Regulatory Science/Research

Grant	Grant Duration	Institute	Grant No.
Development and validation of dermal PBPK modelling platform towards virtual bioequivalence assessment considering population variability	2014-2018	Simcyp, Ltd	1U01FD005225
Physiologically based biopharmaceutics and pharmacokinetics of drug products for dermal absorption in humans	2014-2019	University of South Australia	1U01FD005232
Characterization of key system parameters of mechanistic dermal PBPK models in various skin diseases and performance verification of the model using observed local and systemic concentrations	2018-2020	Simcyp, Ltd	1U01FD006521
Assessment of Transdermal Drug Product Quality and Performance Attributes via Enhanced Virtual Bioequivalence Simulations	2018-2020	SimulationsPlus, Inc	1U01FD006526
Formulation drug product quality attributes in dermal physiologically-based pharmacokinetic models for topical dermatological drug products and transdermal delivery systems	2018-2020	University of Queensland	1U01FD006522
PBPK and Population Modeling Seamlessly Linked to Clinical Trial Simulation in an Open-Source Software Platform	2018-2021	Children's Hospital of Los Angeles	1U01FD006549

Towards Developing Reliable Dermal PBPK Models For Regulatory Decision-making ...

Dermal PBPK modeling is a powerful approach that can be used to

- Explore relationships between systemic and local drug exposure
- Support alternative BE approaches
- Define a safe space for formulation attributes
- Extrapolate BA predictions/BE assessments from healthy to diseased populations
- Conduct virtual BE studies
- PSG development

Acknowledgments

FDA/OMPT/CDER

OGD/ORS/DQMM

Zhanglin Ni

Ross Walenga

Alex Rygg

Andrew Babiskin

Myong-Jin Kim

Liang Zhao

OGD/ORS/DTP

Sam Raney Priyanka Ghosh

Tannaz Ramezanli

OGD/ORS-IO

Lei K. Zhang Robert Lionberger

OTS/OCP

Xinyuan Zhang

Grantees

University of South Australia, Grant #: 1U01FD005232 Simcyp Ltd, Grant #: 1U01FD005225, 1U01FD006521 University of Queensland, Grant # 1U01FD006522 SimulationsPlus, Inc, Grant # 1U01FD006526 Children's Hospital of Los Angeles, Grant # 1U01FD006549

www.fda.gov/GDUFARegScience

Towards developing reliable dermal PBPK models...

Moving forward it is **important to engage all stakeholders** to

- improve software tools that adequately describe formulation and drug substance properties and skin physiology/disease states
- leverage data on local drug concentrations to develop and qualify dermal PBPK models that capture inter- and intra-subject variability
 - literature sources
 - FDA-funded research sources

GDUFA-funded research is set to close knowledge gaps

Local drug concentrations

dOFM, skin stripping, dermal microdialysis In vitro permeation testing

Formulation

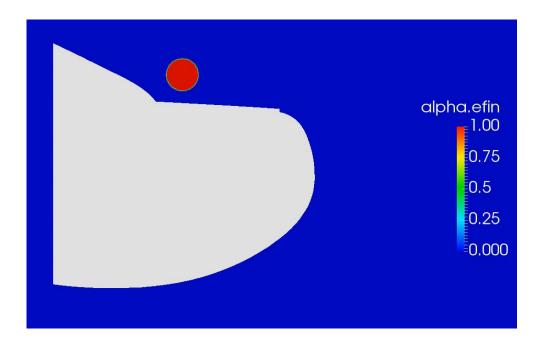
Product quality attributes of semisolid dosage forms

API

Variety of physicochemical properties and pharmacokinetics

Systemic drug exposure

Individual drug concentration-time profiles

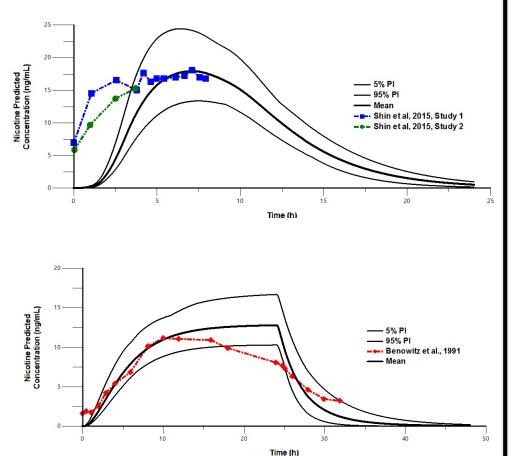

Increase model predictability in regards to local drug concentrations

In vitro-in vivo correlations to predict local drug concentrations based on key formulation characteristics

FD

Efinaconazole topical solution

Spreadability of brand name product viscosity and surface tension


- Indicated for toenail fungal infections
- Computational fluid dynamics (CFD)
- Spreadability, penetrability, absorption of non-Q1/Q2 formulations

Prediction of Systemic Bioavailability Based on Nicoderm CQ patch Release Rate

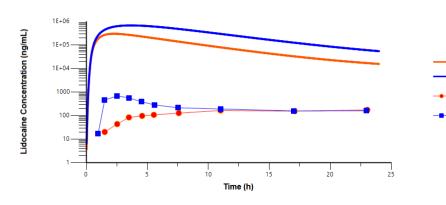
- Nicoderm CQ[®], Nicotine Transdermal System 21 mg Delivered over 24 hours, extended release patch
- Simcyp Simulator (V17), MPML MechDermA Model

Ę

- Nicotine: monoprotic base, minimal PBPK model: Vd=3 L/Kg, CL=72 L/h
- Default skin absorption parameters
- Formulation attributes: Dermal patch, Controlled release profile from IVPT data (Shin et al., 2015) or zero order release rate (Benowitz et al., 1991)

Prediction of Systemic and Skin Bioavailability Based on EMLA[®] Cream Formulation Attributes

EMLA[®] Cream (lidocaine 2.5 %/prilocaine 2.5 %)


Simcyp Simulator (V17), MPML MechDermA Model

Lidocaine: monoprotic base, minimal PBPK model: Vd=1.5 L/Kg, CL=60 L/h

Skin absorption parameters were modified based on systemic exposure data¹

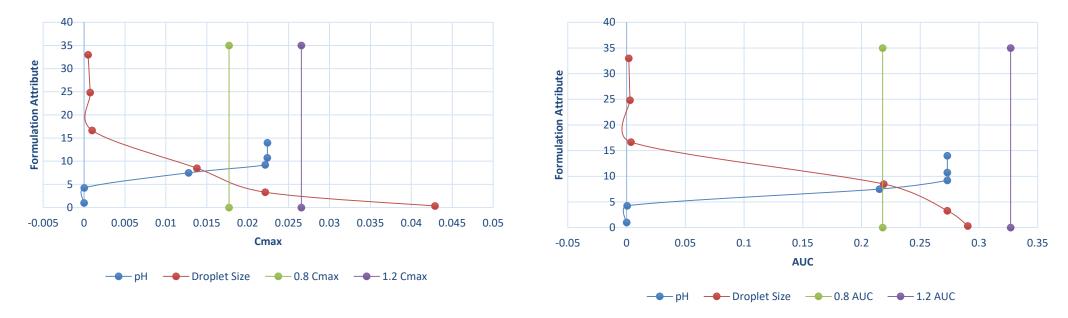
Formulation attributes: emulsion, vehicle evaporation was assumed (Rangapa et al., 2018, AAPS) for verification of the dOFM data (Tiffner et al., 2018, AAPS) ¹ Drug label

•	•	backage			_	
	INS	insert Predict		cted	Rat	tio
	Cmax		Cmax			
	(µg/mL)	Tmax (h)	(µg/mL)	Tmax (h)	Cmax	Tmax
	280	10	317	8.62	1.13	0.86

	Ratio	
	Cmax	Tmax
5 mg/cm2 dose	1719	0.10
15 mg/cm2 dose	988	1.44

an Prediction Dose 5 mg/cm²

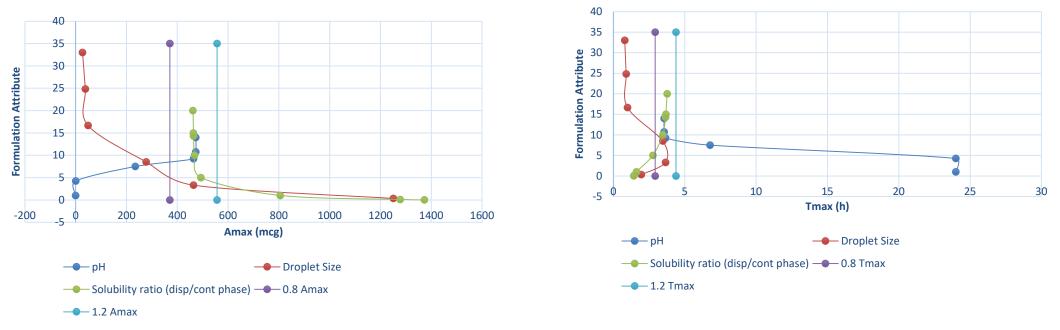
al., 2018, Dose


ean Prediction Dose 18

er et al., 2018, Dose

Define a Safe Space Criteria for Formulation Characteristics Based on Bioequivalence Assessment

Systemic Exposure


Dermatological Products with:

- ✓ Safety concerns
- $\checkmark\,$ Therapeutic effect involves partitioning into the blood

Define a Safe Space Criteria for Formulation Characteristics Based on Bioequivalence Assessment

Skin Bioavailability

Dermatological Products that:

- ✓ Act locally on the skin
- ✓ Therapeutic effect related to local exposure